The Random Ising Ferromagnet in a Transverse Field; the Simplest Model with Quantum Phase Transition

by

A. P. Young*

Monte Carlo and Structure Optimization Methods for Biology, Chemistry, and Physics

*Work supported by the NSF
What is a quantum Phase Transition?

Quantum mechanics is "irrelevant" for critical phenomena except for $\xi = 0$.
Why are quantum Phase Transitions with disorder poorly understood?

Main reason:
Lack of a perturbative renormalization group, ε-expansion

\Rightarrow Flow to strong coupling

- Probably no upper critical dimension
- Relation to Griffiths-McCoy singularities?

\Rightarrow Numerics (Monte Carlo)
Simplest model

\[H = - \sum_{ij} J_{ij} \sigma_i^z \sigma_j^z - \sum h_i \sigma_i^z \]

\{ J_{ij}, h_i \} \text{ random.}

\text{n.b. discrete symmetry}

Ising model in a transverse field

We are interested in:

- (quantum) critical behavior
- Griffiths-McCoy singularities away from the critical point.
Dynamical Exponent (criticality)

Have to include dynamics at the start, even to get static exponents

\[\xi_T \sim \xi^z \]

Pure System Space and time are equivalent so

\[z = 1 \]

Exponents those of the \((d + 1)\)-dimensional classical model. (Elliott, Pfeuty 1970)

Random System Space and time are not equivalent so

\[z \neq 1 \]

What is \(z\)?
Griffiths - McCoy Singularities
slow dynamics - gapless

1st understand gap in Pure Model

Let $\Delta = h/J$.

For $\Delta < \Delta_c, m \equiv \langle \sigma_i^z \rangle > 0, \Rightarrow$ Ferromagnet

For $\Delta > \Delta_c, m = 0, \Rightarrow$ Paramagnetic

Energy Gap

If $h = 0$ the two ground states

are degenerate.

For $h < h_c$ there is a tunneling splitting. Size N need N-th order perturbation theory. Splitting $\sim (h/J)^N \sim \exp(-cN)$. Hence gap varies as follows:

Δ is the dynamical exponent.
ν is the correlation length exponent
Now look at the random case (paramagnetic phase)

Probability \(\sim e^{-\mu V} \) that a point is in a region of volume \(V \) which is "locally in the ferromagnetic phase"

This has a local gap \(\epsilon \sim e^{-cV} \)

Change variables

\[\Rightarrow \text{density of states (power law)} \]

\[P(\epsilon) \sim \epsilon^{-1 + \mu/c} \]

write \(\frac{\mu}{c} = \frac{d}{Z'(\Lambda)} \) continuously varying

In a region of size \(V = L^d \)
the lowest energy excitation is

\[\epsilon_{\text{min}} \sim L^{-1/2'} \] (i.e. gapless)

so \(2' \) is a (sort of) dynamical exponent

Note: analogy to 2-level systems in glasser
The average on-site, (imaginary) time dependent correlation function at $h_0 = 2$, or $\delta = \frac{1}{2} \ln(2) = 0.347$, in the paramagnetic phase. As expected one has a power law variation. The slope of the fit is -0.48. This is $1/z(\delta)$ so we find $z(0.347) = 2.1$.
The average local susceptibility at $h_0 = \frac{3}{2}$, or $\delta = \frac{3}{2} \ln(2) = 0.549$, in the paramagnetic phase. Notice the clear divergence. The slope is -0.39 which gives $\frac{1}{\Delta}(0.549) = 0.61$.

Paramagnetic phase (d=1)
\[\langle 0^z | (t) 0^z | (0) \rangle \sim \frac{1}{T^d} \int \frac{dz}{z} \]

\[\xi \sim T^{-1} + \frac{d}{z}, \quad c \sim T^d \frac{d}{z}, \]

Also, \(\xi \) diverges before critical point is reached if \(\xi'(h) > d \).

\(d = 1 \)

This happens \(\frac{1}{\xi} \).

Summary for Griffiths-McCoy Singularities

- Always expect correlations to decay with a power of time in a range about critical point.
- May or may not have a divergent \(\xi \) in a range about critical point.
- Like a line of critical points, continuously varying exponent \(\xi' \) as far as time correlations are concerned.
- Effects much less strong for continuous symmetry.
Exact results in $d=1$

- $\lim_{h \to h_c} z'(h) = \infty$
 - Hence X diverges for a range of h about h_c [McCoy]

- $z = \infty$ (at criticality)
 - $\ln T \sim L^\gamma$ ($\nu = \frac{1}{2}$) rather than $\gamma \sim L^z$
 - Activated dynamical scaling

- $C_{av} \sim \frac{1}{\nu} \phi$
 - $C_{typ} \sim \exp[-\text{const} \, \nu^0]$ ($\nu = \frac{1}{2}$)
 - i.e. very broad distributions.

- $C_{av} \sim \exp(-\frac{\nu}{3\nu_{av}})$, $\bar{s}_{av} \sim \bar{s}^{-\nu_{av}}$ ($\nu_{av} = 2$)
 - $C_{typ} \sim \exp(-\frac{\nu}{3\nu_{typ}})$, $\bar{s}_{typ} \sim \bar{s}^{-\nu_{typ}}$ ($\nu_{typ} = 1$)
 - Different exponents for average and typical correlation functions.
slope = -0.38, Prediction \(2-\phi, \phi = \frac{\sqrt{5}+1}{2} = 1.62 \)

\[C_{av}(r) \]

\[r \]

\[h_0 = 1 \]

\(-d\) AT criticality
- Are these results special to $d=1$?

\Rightarrow Investigate $d=2$ by Monte Carlo

(with C. Pich)

(Also Rieger & Kawashima)

(n.b. Senthil & Sachdev, for the percolation critical point)
Random Ising model in a transverse field

Hamiltonian

$$\mathcal{H} = - \sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^x$$

where h_i is the transverse field.

We took uniform distributions for h and J

so that some fields are much smaller than the bonds in their vicinity and some are much bigger than the nearby bonds.

i.e. The disorder is Strong.

n.b. A ferromagnet, not a spin glass.

No frustration
Cluster Algorithm
(for spin system without frustration)

starting from a site draw bonds between parallel spins with probability
\[p = 1 - e^{-2H} \]

\[\Rightarrow \text{site-bond model} \]

Flip all spins in a cluster

Statistical weight same for each orientation of spins in cluster. Size of clusters ~ 5!!

weight of bond: \((1-p)e^H\) \(\rightarrow\) same \(\rightarrow\) weight of bond \(e^{-H}\)
Classical Model - 2+1 dimensions

Imaginary time \(0 < \gamma < \beta \)

Time slices, width \(\Delta \gamma \)

- \(\Delta \gamma = 1 \) 3-d Ising model with perfectly correlated disorder
 Wolff algorithm (APY + C. Aich)
 Same universality class as \(\Delta \gamma \to 0 \)
 \(L \gamma = 1/T \)

- \(\Delta \gamma \to 0 \) Exact representation of quantum Hamiltonian
 Continuous imaginary time
 Cluster algorithm (Rieger + Kanashima)
 (cf. Beard + Wiese)

Anisotropic (finite-size) scaling since \(z \neq 1 \)
Improved Estimator for Correlation Functions

Conventionally:
1 if spins parallel
-1 if spins anti-parallel

⇒ variance = 1, if mean small.

Swendsen Wang improved estimator:
1 if spins in same SW cluster
0 otherwise

⇒ variance = mean, if mean small

of statistically independent measurements for error = mean

Conventionally: \(\sim (\text{mean})^{-2} \)

Improved estimator: \(\sim (\text{mean})^{-1} \)
Advantages of Cluster Algorithms

- Reduces critical slowing down
- Improved estimator for correlation functions
- Deals with a very broad distribution of interactions
- Continuous imaginary time algorithm
Griffiths - McCoy Singularities in 2-d
Continuous imaginary time algorithm

\[\uparrow d/\varepsilon'(h) \]

[Rieger + Hawashima]
Looks like \(\varepsilon' \to \infty \) \(\Rightarrow h \to h_c \)
(as in 1-d)
Monte Carlo (at criticality)

\[d = 1, \ T_{cl} = T_c \]

\[C_{av} (L/2) \]
\[C_{typ} (L/2) \]

--- slope = -0.54
monte Carlo (at criticality)

$d=1$, $T_{cl}=T_c$

$i.e. \ C_{typ} \sim \exp\[-const. \ \sigma^2]\$

with $\sigma = \frac{1}{2}$ (agrees with exact soln of D. Fisher)
Monte Carlo (at criticality)

$d=2$, $T_{cl}=T_c$

$C_{av}(L/2)$
$C_{typ}(L/2)$

Slope $=-1.95$
Monte Carlo (at criticality)

$d = 2, \ T_{cl} = T_c$

\[C_{typ} \sim e^{-\text{const.} \sigma / \Delta} \]

with $\sigma \approx \frac{1}{3}$

[n.b. $\sigma = \frac{1}{2}$ in $d = 1$]
Conclusions

Quantum Phase Transitions with disorder
(discrete symmetry)

- Strong Griffiths-McCoy singularities away from critical point
- Critical Phenomena: distributions very broad—average and typical different — $\tilde{z} = \infty$
- Need experiments
 - magnetic $Li_{1-x} Ho_x YF_4$
 - Ferroelectrics?
 - Heavy fermions?
- Need better theoretical understanding

 cf. Motrunich, Mau, Huse, Fisher
 numerical RG