Two-time correlations and coherent scattering experiments on phase-segregating materials

P.A. Rikvold and G. Brown
Center for Materials Research and Technology, School of Computational Science and Information Technology, and Department of Physics, Florida State University, Tallahassee, FL, USA

M. Sutton and M. Grant
Centre for the Physics of Materials McGill University, Montréal, Québec, Canada

Support: NSF, DOE, NERSC, Canada NSERC, Québec FFCAR

http://www.scri.fsu.edu/~rikvold/
http://www.scri.fsu.edu/~browngrg/
Speckle intensity fluctuation spectroscopy

- Used for decades with coherent light scattering
- Commonly used to study equilibrium fluctuations
- Coherent X-rays from synchrotron sources
 - higher penetration, finer resolution than visible light
- X-ray Intensity Fluctuation Spectroscopy (XIFS) recently extended to nonequilibrium systems
- Nonequilibrium speckle fluctuations are not stationary
- Fluctuation statistics reveal spatial structure and dynamics
This work

- Numerically solved Time-Dependent Ginzburg-Landau (TDGL) equation for order-parameter field $\psi(r, \tau)$

$$
\frac{\partial \psi(r, \tau)}{\partial \tau} = \left\{-\frac{1}{2} \nabla^2 \right\}^\alpha \left[(1 + \nabla^2) \psi(r, \tau) - \psi^3(r, \tau)\right]
$$

$\alpha = 0$ for nonconserved; $\alpha = 1$ for conserved order parameter

Dynamic scaling: Characteristic length $R(\tau) \sim \tau^n$

\Leftrightarrow Characteristic wave vector $k_c(\tau) \sim \tau^{-n}$

$n = \frac{1}{2}$ for nonconserved; $n = \frac{1}{3}$ for conserved order parameter

- Developed analytic scaling function for intensity correlations

- Compare with recent experiments on phase separation in borosilicate glass (Malik et al.) and Al-Li alloy (Livet et al.)
Scattering speckle

Simulated scattering intensity, conserved order parameter

Experimental scattering intensity, Sodium Borosilicate Glass

Structure factor and intensity fluctuations

Structure factor: \(S(k, \tau) = \langle I(k, \tau) \rangle \)
where \(I(k, \tau) = |\hat{\psi}(k, \tau)|^2 \) is fluctuating intensity at \((k, \tau)\)

Characteristic wave vector \(k_c \propto R(\tau)^{-1} \sim \tau^{-1/3} \)
\((n = 1/3 \text{ for conserved order parameter})\)

Simulation results (Brown et al., PRE 60, 5151 (1999))

Scaled structure factor vs \(\bar{t} \propto k^{1/n} \bar{\tau} \) Normalized speckle time series
Intensity correlations

Normalized two-time intensity correlation function

\[\text{Corr}(k; \tau_1, \tau_2) = \text{Corr}(t_1, t_2) = \frac{\langle I(k, \tau_1)I(k, \tau_2) \rangle}{\langle I(k, \tau_1) \rangle \langle I(k, \tau_2) \rangle} - 1 ; t_i \propto k^{1/n} \tau_i \]

Natural variables: \(\delta \tau = \tau_2 - \tau_1 \) and \(\bar{\tau} = (\tau_2 + \tau_1)/2 \)

Simulated \(\text{Corr}(t_1, t_2) \) Experimental \(\text{Corr}(\tau_1, \tau_2) \) (Malik et al.)

Rikvold, Brown, Sutton, Grant APS March Meeting, 2000
Scaling function for $\text{Corr}(t_1, t_2)$

If $\langle I(k, \tau_1)I(k, \tau_2) \rangle = \langle \hat{\psi}(k, \tau_1)\hat{\psi}^*(k, \tau_1)\hat{\psi}(k, \tau_2)\hat{\psi}^*(k, \tau_2) \rangle$ breaks down into products of second moments (Gaussian Superposition Approximation), then

$$\text{Corr}(t_1, t_2) \propto \left[\int \! dr \, e^{ik \cdot r} \langle \psi(0, \tau_1)\psi(r, \tau_2) \rangle \right]^2$$

Scaling for SMALL $\bar{t} \propto k^{1/n} \bar{\tau}$

In this limit, $\text{Corr}(t_1, t_2)$ is dominated by the large-scale behavior:

Scaling with $r/R(\bar{\tau})$ and τ_2/τ_1 implies

$$\langle \psi(0, \tau_1)\psi(r, \tau_2) \rangle = C(r/\bar{\tau}^n, \delta \tau/\bar{\tau})$$

To lowest order in \bar{t}, the Fourier transform gives

$$\text{Corr}(t_1, t_2) = \text{Corr} \left(\frac{\delta t}{\bar{t}} \right) \text{ for small } \bar{t}$$
Scaling for LARGE $\bar{t} \propto k^{1/n\bar{t}}$

Many terms in the \bar{t}-expansion would contribute.

In this limit, $\text{Corr}(t_1, t_2)$ is dominated by the small-scale behavior:

$$\frac{\langle \psi(0, \tau_1) \psi(r, \tau_2) \rangle}{\langle \psi^2 \rangle} = 1 - \frac{\delta\tau}{\bar{t}} G \left(\text{const.} \frac{r}{\Delta R} \right)$$

\[G(x) \sim \begin{cases}
1 & \text{for } x \ll 1 \\
x & \text{for } x \gg 1
\end{cases} \quad \text{and} \quad \Delta R = \delta\tau \left. \frac{dR(\tau)}{d\tau} \right|_{\tau = \bar{t}} \propto \frac{\delta\tau}{\bar{t}(1-n)} \]

is the “new” relevant length scale

Fourier transforming we obtain:

$$\text{Corr}(t_1, t_2) = \text{Corr} \left(\frac{\delta t}{\bar{t}(1-n)} \right) \text{ for large } \bar{t}$$
Characteristic time difference (correlation time), δt_c

Define $\delta t_c(t)$ by $\text{Corr}(\delta t_c, \bar{t}) = 1/2$

Simulated δt_c vs \bar{t}
(Brown et al., PRE 60, 5151 (1999))

Experimental δt_c vs \bar{t}
$Al_{0.91}Li_{0.09}$
(Livet et al., unpublished)

Rikvold, Brown, Sutton, Grant

APS March Meeting, 2000
Speckle-intensity correlation scaling function for large \bar{t}

Analytical result

$$C_d(z) = \left[\frac{2}{\Gamma\left[\frac{d+1}{2}\right]} \left(\frac{A\bar{z}}{2}\right)^{\frac{d+1}{2}} K_{\frac{d+1}{2}} (A\bar{z}) \right]^2$$

$$\sim \begin{cases}
1 - O((A\bar{z})^2) & \text{for } A\bar{z} \ll 1 \text{ (persistence)} \\
(A\bar{z})^d \exp[-2A\bar{z}] & \text{for } A\bar{z} \gg 1
\end{cases}$$

where $z = \delta t / \bar{t}^{(1-n)}$

K_ν is a modified Bessel function, d is the spatial dimension, and A is a numerical constant

Valid for conserved and nonconserved order parameter and in 2 and 3 dimensions!
Speckle-intensity correlation scaling function for large \bar{t}

Comparison with numerical and experimental results

$z = \delta t / t^{2/3}$

$\Phi_2(0.62z)/2\pi$

Simulated $\text{Corr}(\delta t, \bar{t})$ vs $z = \delta t / t^{(1-n)}$

(Brown et al., PRE 60, 5151 (1999))

Al$_{0.91}$Li$_{0.09}$ (Livet et al.)

$\tau_1 = 2163$ s, 7920 s, 16320 s

Rikvold, Brown, Sutton, Grant

APS March Meeting, 2000
Conclusions

- Speckle-intensity fluctuations in phase-segregating nonequilibrium systems
 - Give nonstationary, persistent time series
 - At early times reflect large-scale dynamics and structure
 Speckle correlation time $\delta t_c \sim \bar{t}$
 - At late times reflect local interface dynamics and structure
 Speckle correlation time $\delta t_c \sim \bar{t}^{(1-n)}$
 - Are observable in XIFS experiments

- Analytic large-\bar{t} scaling function involving modified Bessel function valid for systems with both conserved and nonconserved order parameter, and in 2 and 3 dimensions

- Good agreement between analytic results, simulations, and XIFS experiments on Sodium Borosilicate Glass and Al-Li alloy